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On a non-linear theory of thin jets. 
Part 2. A linear theory for small injection angles 

By ROBERT C. ACKERBERG 

Polytechnic Institute of Brooklyn, Graduate Center, Farmingdale, New York 

(Received 19 September 1967) 

A non-linear potential problem which describes the injection of a high speed jet 
into a uniform flow of lower total head is linearized when the jet injection angle 
is small. The resulting linear problem is solved using the Wiener-Hopf technique. 
Numerical results for the position of the streamline separating the jet from the 
free stream and the pressure coefficient along the upstream wall are obtained 
for various injection angles. 

1. Introduction 
In  two recent papers Ackerberg & Pal (1968) and Ackerberg (1968) [hereafter 

referred to  as A-P and I, respectively] studied the interaction of a jet with a 
uniform flow for cases where the ratio of the free stream to jet dynamic heads, 
,u = p 2 q ~ z / p 1 q ~ l ,  is small compared to unity (see figure 1). Here p l ,2  and qm1,2 
are the fluid densities and speeds at an infinite distance downstream, and the 
subscripts 1 and 2 refer to the jet and the free stream, respectively. In  this paper 
it is shown that when the jet injection angle a, measured between the initial jet 
direction and the downstream uniform flow direction, is small compared to 
unity, the non-linear boundary condition along the vortex sheet can be linearized, 
and only a single linear potential problem need be solved for a < 1. A physical 
interpretation of this problem is given, and a solution is found using the Wiener- 
Hopf technique. Numerical results are obtained for the position of the bounding 
streamline separating the jet from the free stream and for the pressure coefficient 
along the upstream wall. Although the theory is not expected to  be valid for 
large injection angles, a comparison is made with the numerical results obtained 
by A-P for normal injection and the agreement is fairly good. 

2. Formulation 
Introduce a co-ordinate system z = x+iy with origin at  0 (see figure 1). In  

the external flow outside of the jet define the complex velocity potential 
w*(z) = 0 + iY and the complex velocity dw*/dx = u - iv = qe-ie. Each function 
will be analytic in z, and thus the logarithm of the non-dimensional complex 
velocity 

will be an analytic function of w*. The fluid deflexion 8"is related to the logarithm 
of the non-dimensional speed 8 by the Cauchy-Riemann equations. 

F(w*) = Q(Q,Y) - - ~ ( Q , Y )  = In (q;idw*/dz), (2.1) 
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Introduce the non-dimensional variables 

Z = X + i Y  = pz/d and w = q5+i$ = (p/dqm2)w*,P J;;;++r 
c- -m f 3 0 4  

O', CF" '\ #<O, $ = 0 

__t 

Stagnant wake region 

P'Pm 

\ Jet \ 
\ \ 

\ 
\ - 

vqm I 
\ - # > O , $ = O \  

Uniform flow qm2, pm, p 2  - 
FIGURE 1. Region of flow in physical plane. 

where d is the jet width. According t o  A-P or I ,  g(@, Y) satisfies the following 
non-linear potential problem when p + 0: 

V ~ Q = O  for $ G O  ( -oo<#<co) ,  (2.3) 

aQla$= o for $ = o ($<o), (2.4) 

@/a$ = - sinha for $ = 0 (q5 > 0), (2.5) 

0 (a/r)ln lw] for IwI -to, (2.6) 

and Q+o for I w ~ + c o .  (2.7) 
Here V2 is the Laplacian operator with respect to (4, $). 

The linearization procedure 

To obtain an expansion which is valid for small a, assume 

a q 5 2  $1 a&($, $) + o(a).S (2.8) 
Substituting (2.8) into (2.3)-(2.7), expanding for a+O [assuming Q remains of 
O(l)] ,  and equating the coefficients of a to zero, we obtain (2.3), (2.4), (2.6) and 
(2.7) with a replaced by Q and a = 1.s The main simplification occurs in (2.5), 

was the leading term in an asymp- 
totic expansion for ,u -+ 0. To first order, 0 in I is equal to 0 in (2.1). Also, t2 in I is dehed 
here as w by (2.2). 

$ The next non-trivial term will be of O(a*).  Only the first-order solution will be con- 
sidered here. 

3 Hereafter when referring to these equations, we will assume that these substitutions 
have been made. 

7 Note the slight change in notation from I where 



Non-linear theory of thin jets. Part 2 263 

which is now replaced by the linear boundary condition 

aQla$ = - Q  for @ = o (+>o) .  
It is expected that this equation will be in error when 

due to the singularity condition (2 .6) .  The linearization' changes the algebraic 
singularity of @/a$ on @ = 0 when + -+ 0 + [which should be of the O(+-"/")] 
into a logarithmic singularity. Nevertheless, we will find a posteriori that this 
modification only affects the streamline curvature near the jet exit and not the 
values of 0 and 8, both of which may be determined correctly to  O(a)  every- 
where.-/- 

A physical! interpretation of the ~ o ~ e n t ~ a l !  problem 

The potential problem defined by (2.3), (2.4), (2.6), (2.7) and (2.9) has a simple 
physical interpretation in terms of a second unrelated flow. Let us suppose that 

IwI = O(e-"la), (2.10) 

Unit half-source at origin 
Q - n-l in (x2+y2)f 

J2Q J2Q 
- + - = 0 (-03 <x<w,y GO) 
3x2 JY2 

Q -+ 0 for (x2+y2)f + m 

FIGVRE 2. Physical interpretation of the linear potential problem. 

Q represents a velocity potential, and we interpret (+,$) as the physical co- 
ordinates (x, y). This new flow takes place in the lower half-plane y < 0 with a 

It has been pointed out in I that in the non-linear theory the curvature determined 
from and e" in the region near the jet exit [$ = 0(,~?11n-~))] is in error by O(p) for a * in. 
When a + 0, the region given by (2.10) will be much smaller than the aforementioned 
region provided a/r  < [ln p1-l. Since this condition will usually be met in practical situa- 
tions, there is no point in correcting the curvature to O ( a ) .  It is worthwhile noting that 
with the linearization the curvature of the bounding streamline at the jet 6xit is zero; 
this agrees with the correct value given by the inner solution when a < &T (see I). There- 
fore, the bounding streamlines determined here for a + 0 may be more realistic than those 
determined from the non-linear equations. 
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half-source of strength one placed at the origin (see figure 2). The boundary con- 
ditions imply that the wall y = 0, x < 0 is impermeable to fluid whereas fluid is 
being withdrawn through y = 0, x > 0 at a rate proportional to the negative of 
the local value of the velocity potential. From (2.7) we must have no net sink 
(or source) strength at infinity. This can only be the case if precisely one unit of 
fluid per unit time is being withdrawn along the entire porous wall. Thus, we 
require 

(2.11) 

If this condition is not met, the jet will not be aligned with the uniform flow at an 
infinite distance downstream. This follows from the Cauchy-Riemann relation 

= aO/a$, relating Q with its conjugate harmonic function 8, and noting 
that8(0+,0) = -1 .  

When the linear problem is considered in this way there can be little doubt that 
a solution exists. The uniqueness, on the other hand, can be established from a 
variational principle and will be discussed elsewhere. 

3. The integral equation and its solution by the Wiener-Hopf tech- 
nique 

The solution of the potential problem can be found by first formulating it as an 
integral equation and then applying the Wiener-Hopf technique. To cast the 
problem into a convenient form, we consider the slightly more general equation 

V 2 Q - k 2 Q  = 0, (3.1) 

where k is a positive parameter which will be allowed to approach zero at  a con- 
venient point in the analysis. The appropriate Green's function which has a zero 
normal derivative along @ = 0 is 

G($, @ l a , t )  = - (2n)-1[Ko(k[($-s)2+ (@-tt)21') 

+ Ko(k[($ - + (@+ t)2191, (3.2) 

where K O  is the modified Bessel function of the second kind of order zero. If we 
apply Green's theorem, and allow for the boundary conditions and the logarith- 
mic singularity at the origin, the following integral equations can be obtained 
for Q :  

Q($ ,o)  = -+ &(~,O)K~(kl$-sl)d~-n-~K,(klq5l) for --a3 < q5 < 00. 

Define the new functions 
s: (3.3) 

and (3.5) 

t This is equivalent to the condition that the integral of the normal derivative of a 
harmonic function around a closed boundary must vanish to ensure the absence of a net 
source or sink strength within the contour. Here we are insisting on having no singularities 
at infinity so that the integral around the infinite contour must vanish. 
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The integral equation may now be written 

(3.6) 
Introduce the Fourier transform and its inverse 

Prom the definition (3.4), FA(@) will be an analytic function in the lower half- 
plane Im w < 0;  this is denoted by the suffix - . Similarly G+(w), the Fourier 
transform of g($) ,  will be an analytic function in the upper half-plane. On taking 
the Fourier transform of (3.6) we find 

R(w) + G+(o) = - n-lE(w)fil_(w) - ~-‘K(W), (3.8) 

where R(w)  = n-(k2+w2)--:, (3.9) 

is the Fourier transform of Ko(kl$ I )  and is a regular function in the o-plane which 
has been cut along the imaginary axis from ik to ioo and - ioo to  - ik. Rewriting 

K(w) [ 1 + (k2 + w2)-*] = - G+( W )  - (k2 + w 2 ) 6 .  (3.10) 
(3.8) we obtain 

To apply the Wiener-Hopf technique it is necessary to write the coefficient of 
F-(w) as the ratio of two functions, the numerator being analytic in the lower 
half-plane Imw < k, and the denominator being analytic in the upper half- 
plane Imw > - k. Therefore, write 

1 + (k2+ w2)-& = L-(w)/L+(w),  (3.11) 

and - k < c < Im w < d < k.t To evaluate these integrals it is convenient first 
to differentiate with respect to w and then displace the contours so that the in- 
tegral for L- (say) embraces the branch cut from ico to ik. Taking into account 
the contribution from the neighbourhood of the branch point ik, we find after 
letting k -+ 0 

L”w)/L-(o) = -(Zw)-l+- [(g+iw)(l+g2)]-ldC.$ (3.14) 

To complete the integrations, let w be a point on the negative imaginary axis 
and put w = -it with t > 0. We find 

L-( - it) = C(I+ t-z)texp ( - n--1 Jt (1 + s21-1 In s d ~ )  , (3.15) 

t The method of splitting and the Wiener-Hopf technique are fully discussed in a book 

$ Primes denote differentiation with respect to w .  

g o  Sm 

0 

by Noble (1958). 
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where C is a constant of integration.? To determine L J w )  elsewhere, introduce a 
cut along the positive imaginary axis. Thus, if w is real and positive, 

L - ( w )  = c e-ini( 1 + w-l ) t  exp { - (i/n) / ( 1 - s2)-l In s ds] . (3.1 6) 

Similarly, if w = it with t real and positive, 

L+(it) = ~ ( 1  +t-2)-aexp(n-1St 0 (1 +s2)-llnsds). (3.17) 

Here the constant of integration has been chosen so that (3.1 1) is satisfied when 
k = 0 and w is real (see the footnote 1- below). 

We now substitute (3.1 1) into (3.10) and rearrange to obtain 

L-(o) [1 +F-(u)] = L+(w)[~  -G+(u)]. (3.18) 

If we assume, for the moment, that k + 0 and F- and G+ are analytic in the strip 
jIm 0 1  < k, the left-hand side of (3.18) defines a function which is analytic in the 
lower half-plane Im w < Ic. Similarly the right-hand side is analytic in the upper 
half-plane Im w > - k. It follows that both sides must equal a function which is 
analytic everywhere, except possibly at the point at infinity. The behaviour 
for w +00 depends on the nature off($) and g ( $ )  when $ -f 0. To satisfy the singu- 
larity condition (2.6), we assume (and verify a posteriori) that the correct ana- 
lytic function is a constant A .  It follows then from (3.18) that 

Fyw)  = - 1 +A/L-(w),  (3.19) 

and a similar expression may be written for G+(w). Expanding (3.16) for w - f c o ,  

L J w )  N C[ 1 - ( i / n w  ) ( 1 + In w )  + (2w) - l -  2( 2 ? ~ w ) - ~  (In w ) ~  + . . .I. (3.20) 

Substituting into (3.19), we obtain for w +- 00 
F-(w) N - 1 + ( A / C )  [1+ ( i / r w )  (1 + In w )  - (Zw)-l- 2 ( 2 n ~ ) - ~  (In w ) ~  + . . .I. (3.21) 

The correct logarithmic singularity will result a t  the origin by choosing A/C = 1. 
If each term of (3.21) is then interpreted separately, an asymptotic expansion for 
4 + 0 + can be found in the forms 
f(#) N r11n#+r1 (y - -  1)+(2n2)-1#(In#)2+O(#In#) for # - + O f ,  (3.22) 

where EuIer's constant y = 0.5772.. . . The expansion for g ( # )  is the same to this 
number of terms when # + 0 - provided # is replaced by [ # I  in the arguments of 
the logarithms. A more general expansion for r(w) = Q(#,  $)-id(#, $) when 
w+O is 

r(w) N n-1lnW+n-1(y-1)-W[(2n2)-1(lnW)2+(y-2)n-2lnW+0(1)]+ ..., 

where W = e"iw and 0 2 argw 2 -?I.§ 
(3.23) 

t Since we are determining the ratio L-/L+, C' is completely arbitrary provided it 

$ A very convenient table for this purpose has been compiled by Geller (1963). 
0 A comparison with the asymptotic expansion of f ( w )  from the non-linear theory [see 

(4.14) of I] shows a difference in the analytical form of the third- and other higher-order 
terms. This accounts for the difference in the curvature of the bounding streamline at  the 
jet exit. 

appears as a multiplicative factor in L, and (3.11) is satisfied. 
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To complete the determination off and g we use the inversion integral (3.7) 

(3.24) 
to obtain m 

j($) = (2n)- l j  [ - 1 + C / L - ( ~ ) ]  eilwdw, 
-03 

arid (3.25) 

Both integrals may be evaluated in a similar way, which for the case off(#) in- 
volves deforming the contour so that it embraces both sides of the positive 
imaginary &xis, and then using (3.11) and (3.17) to find the values of L ( o )  on 
either side of the cut. The details are not very interesting and we simply give the 
results : 

j (4)  = - n-l~me-rlt~(l+12)-~exp ---I (1+s2)-11nsds dt for $ > 0, 

(3.26) 
0 ( Sb 1 
0 1 s: 1 

and 

g(#) = -x-lSrne~'t-t(l+t2)-te,p r1 (1+s2)-l1nsds dt for $ < 0. 

(3.27) 
Asymptotic expansions can be found for I$I +- co by expanding the integrands 

of (3.26) and (3.27) for t+  0 and integrating term-by-term. In  this way we obtain 
[see Geller (1963)] 

(3.28) 

and g(#) N -(;rrl$l)-"(2n%)-11$1-%1nI$I f . . .  for $-+-a. (3.29) 

The first few terms in these expansions have the same analytical form as those in 
the non-linear theory because, when &+O,  (2.5) is approximated by (2.9) to a 
high degree of accuracy. 

Oncef($) is known, the deflexion of the bounding streamline can be determined 
from the Cauchy-Riemann equations and (2.1 1) with the upper limit replaced 
by the variable limit q5, i.e. 

f ( t ) d t  for # > 0.f (3.30) 

f($) N - (24n)-l$-+ - (jn-8) 4-4 In # + . .. for $ +coy 

4. Calculation of the bounding streamline and the coefficient of the 
pressure 

Numerical values for f(#), g(#) and 8($ > O , O ) ,  obtained on an IBM 7040 
computer with Simpson's rule, are displayed in figures 3 and 4.$ The details of 

t It might be considered more accurate to determine O($, 0 )  from the non-linear rela- 
tion (2.5).  However, it is unlikely that 

and as a result the jet will not be aligned with the uniform stream at an i&te distance 
downstream. 

$. Numerical tables of these functions have been lodged with the editor and are available 
on request. 
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the numerical calculations are lengthy and some of the more important aspects 
are discussed in the appendix. 

The calculation of the position of the bounding streamline and the coefficient 
of the pressure along the upstream wall can be found using (2.1) and noting that 
to first order 

F ( W )  = c"$, ?fv - iO($, $)I. 

0 

Thus. 

1 2 3 4 5 

9 
FIGURE 3. The functionf(4) versus 4. 

4 
Y = 1 exp [- a.(t)l sin [ a ~ ( t ,  0)1dt on llr = o (4 > o) ,  

where now x = J  exp[-ag(t)ldt on e =  o ( $ < o ) ,  (4.4) 

(4.2) 

C,(X) = (2, -Pto)/(4Pip2q2,2) = 1 - exp C%7($)1 on @ = 0 ($ < 0)s (4.3) 

0 

a n d f o r y = O , x < O  

c 
0 

and p is the static pressure. 

formula (3.23). We find to first order after eliminating q5 
Near the jet exit, (4.1) and (4.2) may be evaluated using the asymptotic 

Y -  -Xtana+ . . .  (a+ in) for X,Y-+O along $ = O  (q5>0). (4.5) 
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At large distances from the jet exit, the bounding streamline has the same 
asymptotic form (to the first few orders) as that found by A-P in the non-linear 
theory. Thus 

X N (n/4a2) ( Y + a2/2)2 - (a2/2n) In [(77/4a2) ( Y + a2/2)2] + const. + o( 1) 

for X ,  Y+co on @ = 0 (Q>O).Jr (4.6) 

-1.0 - 

- 0 9  ' 

- 0 3  

- 0 2  

-01 

0 1 

4 
FIGURE 4. The functions g( -9) and O($,  0) versus $. 

Numerical results 
The shapes of the bounding streamlines for a number of injection angles are 
shown in figure 5.  For small values of a ( < Z O O )  the curves are very shallow and the 
theory is probably quite accurate near the jet exit where the spreading effect of 
viscosity will be small. Although the theory is not expected to be valid for large 
a, a comparison has been made with the numerical results for 90" injection ob- 
tained from the non-linear theory (see A-P). The linear theory gives a deeper jet 
penetration, and this could have been predicted from the physical interpretation 
in $2 by noting that, since IsinhQI B ]&I, more fluid will be withdrawn locally 

t The value of A ,  in (4.8) of A-P can be given a definite value for the problem considered 
here because the constants in the asymptotic formulae (3.28) and (3.29) me known ana- 
lyrically [cf. (4.4) of A-PI. Thus, A ,  = --a/7d. 
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0 I 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

X 

FIGURE 5 .  The bounding s t r e d i n e  for various vaIues of a. 

FIGURE 6.  The coefficient of the pressure along the upstream wall for various values of a. 
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through the porous wall in the non-linear case and the jet penetration will be 
attenuated more rapidly.? 

The coefficient of the pressure along the upstream wall is displayed for different 
injection angles in figure 6. It is interesting to note for small a the 'boundary 
layer' type of transition from the stagnation pressure at X = O - to almost free- 
stream static pressure within a very small distance from the jet exit [ X  = 0(2)]. 
This result may partially account for the success of jet-flap theory in which the 
stagnation point is ignored [see Woods (1961, p. 409ff.)]. The difference in C, for 
the linear and non-linear theory when a = 90" can also be explained by the argu- 
ment given in the last paragraph. 

It would be interesting and worthwhile to know if experimental results near 
the jet exit agree with the theory. An experimental apparatus with a liquid jet 
issuing into a uniform gas flow would have the advantage that ,LA could be made 
very small with moderate values of the velocities due to  the density ratio. When 
a < in the jet curvature is of O(p) everywhere and surface tension effects, as well 
as viscous spreading, might not be too important close to the jet exit. 

This research was supported by the U.S. Army Research Office, Durham, 
under Contract No. DA-3 1-124-ARO-D-444. The author gratefully acknow- 
ledges the help of Mr J. Phillips in programming many of the numerical calcula- 
tions. 

Appendix 
For numerical calculations it is convenient to write (3.26) and (3.27) asfollows: 

f($) = -n-'JledttB(l + t 2 ) - %  [H(t)]-ldt-n-1E1(4) 
0 

where the exponential integral El($)  is defined by 

and ~ ( t )  = exp (n-1St 0 (1 +s2)-llnscis]. (A 4) 

In  this form each integral is convergent for all $ for which it is defined, and the 
logarithmic singularity when \ $ I  -+ 0 is clearly displayed through El($). 

t This assumes that the Q used in both boundary conditions is the same. For small 
values of a, Q will be uniformly valid to O( 1). Therefore, providing that integrals of higher- 
order terms do not contribute to the flux withdrawn through the wall (and there is no 
obvious reason why they should) it is probable that the bounding streamline from the 
linear theory represents an upper bound to  the jet penetration. 
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If the infinite integrals in (A 1) and (A2) are truncated a t  t = T ,  it  is easy to 
show that the error will be of the form DE,( l#lT), where the constant D < 5.0. 
Thus, to make the error of the 0(10-5) say, we should choose T M S/[#l. 
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